New models of Tetrahymena telomerase RNA from experimentally derived constraints and modeling.
نویسندگان
چکیده
The telomerase ribonucleoprotein complex ensures complete replication of eukaryotic chromosomes. Telomerase RNA (TER) provides the template for replicating the G-rich strand of telomeric DNA, provides an anchor site for telomerase-associated proteins, and participates in catalysis through several incompletely characterized mechanisms. A major impediment toward understanding its nontemplating roles is the absence of high content structural information for TER within the telomerase complex. Here, we used selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) to examine the structure of Tetrahymena TER free in solution and bound to tTERT in the minimal telomerase RNP. We discovered a striking difference in the two conformations and established direct evidence for base triples in the tTER pseudoknot. We then used SHAPE data, previously published FRET data, and biochemical inference to model the structure of tTER using discrete molecular dynamics simulations. The resulting tTER structure was docked with a homology model of the Tetrahymena telomerase reverse transcriptase (tTERT) to characterize the conformational changes of tTER telomerase assembly. Free in solution, tTER appears to contain four pairing regions: stems I, II, and IV, which are present in the commonly accepted structure, and stem III, a large paired region that encompasses the template and pseudoknot domains. Our interpretation of the data and subsequent modeling affords a molecular model for telomerase assemblage in which a large stem III of tTER unwinds to allow proper association of the template with the tTERT active site and formation of the pseudoknot. Additionally, analysis of our SHAPE data and previous enzymatic footprinting allow us to propose a model for stem-loop IV function in which tTERT is activated by binding stem IV in the major groove of the helix-capping loop.
منابع مشابه
Striking Similarities in Diverse Telomerase Proteins Revealed by Combining Structure Prediction and Machine Learning Approaches
Telomerase is a ribonucleoprotein enzyme that adds telomeric DNA repeat sequences to the ends of linear chromosomes. The enzyme plays pivotal roles in cellular senescence and aging, and because it provides a telomere maintenance mechanism for approximately 90% of human cancers, it is a promising target for cancer therapy. Despite its importance, a high-resolution structure of the telomerase enz...
متن کاملSingle-molecule FRET-Rosetta reveals RNA structural rearrangements during human telomerase catalysis.
Maintenance of telomeres by telomerase permits continuous proliferation of rapidly dividing cells, including the majority of human cancers. Despite its direct biomedical significance, the architecture of the human telomerase complex remains unknown. Generating homogeneous telomerase samples has presented a significant barrier to developing improved structural models. Here we pair single-molecul...
متن کاملTetrahymena telomerase is active as a monomer.
Telomerase is an enzyme that utilizes an internal RNA molecule as a template for the extension of chromosomal DNA ends. The catalytic core of telomerase consists of the RNA subunit and a protein reverse transcriptase subunit, known as telomerase reverse transcriptase (TERT). It has previously been shown that both yeast and human telomerase can form dimers or multimers in which one RNA in the co...
متن کاملA novel specificity for the primer-template pairing requirement in Tetrahymena telomerase.
Telomerase is a specialized reverse transcriptase with a built-in RNA template. Base pairing between the templating domain of telomerase RNA and a telomeric DNA primer is normally a characteristic of elongation of telomeric DNA. Here we demonstrate the mechanism by which Tetrahymena telomerase bypasses a requirement for template-primer pairing in order to add telomeric DNA de novo to completely...
متن کاملTetrahymena proteins p80 and p95 are not core telomerase components.
Telomeres provide stability to eukaryotic chromosomes and consist of tandem DNA repeat sequences. Telomeric repeats are synthesized and maintained by a specialized reverse transcriptase, termed telomerase. Tetrahymena thermophila telomerase contains two essential components: Tetrahymena telomerase reverse transcriptase (tTERT), the catalytic protein component, and telomerase RNA that provides t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 134 49 شماره
صفحات -
تاریخ انتشار 2012